Multi-Class Pegasos on a Budget

نویسندگان

  • Zhuang Wang
  • Koby Crammer
  • Slobodan Vucetic
چکیده

When equipped with kernel functions, online learning algorithms are susceptible to the “curse of kernelization” that causes unbounded growth in the model size. To address this issue, we present a family of budgeted online learning algorithms for multi-class classification which have constant space and time complexity per update. Our approach is based on the multi-class version of the popular Pegasos algorithm. It keeps the number of support vectors bounded during learning through budget maintenance. By treating the budget maintenance as a source of the gradient error, we prove that the gap between the budgeted Pegasos and the optimal solution directly depends on the average model degradation due to budget maintenance. To minimize the model degradation, we study greedy multi-class budget maintenance methods based on removal, projection, and merging of support vectors. Empirical results show that the proposed budgeted online algorithms achieve accuracy comparable to non-budget multi-class kernelized Pegasos while being extremely computationally efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REGIMRobvid: Objects and Scenes Detection for Robot Vision 2013

This paper describes the participation of the REGIM team in the ImageCLEF 2013 Robot Vision Challenge. The competition was focused on the problem of objects and scenes classification in indoor environments. Objects and scenes are considered as concepts. During the competition, we aim to classify images according to the room in which they were acquired, using the information provided by the visu...

متن کامل

IN-DEDUCTIVE and DAG-Tree Approaches for Large-Scale Extreme Multi-label Hierarchical Text Classification

This paper presents a large-scale extreme multilabel hierarchical text classification method that employs a large-scale hierarchical inductive learning and deductive classification (IN-DEDUCTIVE) approach using different efficient classifiers, and a DAG-Tree that refines the given hierarchy by eliminating nodes and edges to generate a new hierarchy. We evaluate our method on the standard hierar...

متن کامل

Maximum Margin Distance Learning for Dynamic Texture Recognition

The range space of dynamic textures spans spatiotemporal phenomena that vary along three fundamental dimensions: spatial texture, spatial texture layout, and dynamics. By describing each dimension with appropriate spatial or temporal features and by equipping it with a suitable distance measure, elementary distances (one for each dimension) between dynamic texture sequences can be computed. In ...

متن کامل

Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization

We have developed an optimized cutting plane algorithm (OCA) for solving large-scale risk minimization problems. We prove that the number of iterations OCA requires to converge to a ε precise solution is approximately linear in the sample size. We also derive OCAS, an OCA-based linear binary Support Vector Machine (SVM) solver, and OCAM, a linear multi-class SVM solver. In an extensive empirica...

متن کامل

Conflict Graphs for Parallel Stochastic Gradient Descent

We present various methods for inducing a conflict graph in order to effectively parallelize Pegasos. Pegasos is a stochastic sub-gradient descent algorithm for solving the Support Vector Machine (SVM) optimization problem [3]. In particular, we introduce a binary treebased conflict graph that matches convergence of a wellknown parallel implementation of stochastic gradient descent, know as HOG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010